Porous NiTiO3/TiO2 nanostructures for photocatatalytic hydrogen evolution

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis

CoP nanostructures that exposed predominantly (111) crystal facets were synthesized and evaluated for performance as electrocatalysts for the hydrogen-evolution reaction (HER). The branched CoP nanostructures were synthesized by reacting cobalt(II) acetylacetonate with trioctylphosphine in the presence of trioctylphosphine oxide. Electrodes comprised of the branched CoP nanostructures deposited...

متن کامل

Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

A robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. A...

متن کامل

Hydrogen evolution reaction measurements of dealloyed porous NiCu

: Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron micro...

متن کامل

Confined diffusion in periodic porous nanostructures.

We performed fluorescence correlation spectroscopy measurements to assess the long-time self-diffusion of a variety of spherical tracer particles in periodic porous nanostructures. Inverse opal structures with variable cavity sizes and openings in the nanometer domain were employed as the model system. We obtained both the exponent of the scaling relation between mean-square displacement and ti...

متن کامل

Enzymatic Biofuel Cells on Porous Nanostructures.

Biofuel cells (BFCs) that utilize enzymes as catalysts represent a new sustainable and renewable energy technology. Numerous efforts have been directed to improve the performance of the enzymatic BFCs (EBFCs) with respect to power output and operational stability for further applications in portable power sources, self-powered electrochemical sensing, implantable medical devices, etc. The lates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Materials Chemistry A

سال: 2019

ISSN: 2050-7488,2050-7496

DOI: 10.1039/c9ta04763h